

Global Population from Year 1 to Year 2000

Figure 4. Since the beginning of the Industrial Revolution in the middle of the 19th century, the concentration of carbon dioxide (CO₂) in the atmosphere has steadily increased. Beginning in 1957, continual measurements of atmospheric CO₂ concentrations have been made by scientists at an observatory in Mauna Loa, Hawaii. The seasonal cycle of vegetation in Northern latitudes can be seen in this record: each spring the vegetation "inhales" and absorbs CO₂, and each autumn most of that CO₂ is released back to the atmosphere.

Stratospheric Ozone

Upper atmosphere

Beneficial (UV-B shield)

Tropospheric Ozone

Lower atmosphere Detrimental to humans and plants Anthropogenic in origin Secondary pollutant Contributors to global warming

Tropospheric Ozone

- Ozone photochemistry is driven by VOC precursors and anthropogenic NO_x
- NO_x emissions are largely related to vehicular traffic and fossil fuel burning

What are the Trends in O₃ Occurrence?

- Increasing 1-1/2 to 2% per year
 - Marenco et al. 1994, J. Geophys. Res. 99 (D8):16617-16632
- Increased 40% since preindustrial times (IPCC, 2001).

Ozone and Forests: Worldwide

From: Fowler et al. 1999, Water, Air and Soil Pollut. 116:5-32

Ozone and Forests: United States

- Decreased peaks around metropolitan areas
- Increases still being measured in many rural areas

Data from: U.S. EPA O₃ data (website: http://www.epa.gov/airs/)

FACTS II (Aspen FACE) Objectives

- The main objective is to examine the effects of elevated CO₂ and/or O₃ on carbon and nitrogen cycles and on ecological interactions of a northern forest ecosystem.
 - carbon sequestration
 - growth and productivity
 - competitive interactions and stand dynamics
 - trophic interactions
 - foliar decomposition
 - mineral weathering
 - nutrient cycling
 - water balance

Policy Questions Addressed by FACE

- Are forests net carbon sources or sinks?
- Is carbon sequestered by trees stored for a long time in the soil?
- Will more or less CO₂ be sequestered by forests as CO₂ levels rise?
- Will forests become more or less productive over time under increasing CO₂?
- Will CO₂ "fertilization" be limited by rising O₃ levels, nitrogen limitation or drought?
- How will increasing CO₂ affect insect and disease interactions with forests?

• Progress in canopy closure at the FACTS II (Aspen FACE) project can be seen in these photos from July 1998, 2000, and 2002, respectively.

Moderation of CO₂ Responses: Ozone Photosynthesis

 Mean values of instantaneous photosynthesis at the Aspen Face Site

Data from: Noormets, Sharma, Kubiske, Davey, and Long

Moderation of CO₂ Responses by O₃: Gas Exchange

From: Noormets et al. 2001

Results: Effects of CO₂ and O₃ on Aspen

Brookhaven
Science Associates

Brookhaven
National Laboratory

O₃ Moderates Aspen Growth Response to CO₂

Percy et al. 2002, Nature 420:403-407

Aspen/Birch 2002

Moderation of CO₂ Responses: Ozone Belowground Respiration

Soil and microbial respiration values from the Aspen FACE project

Data from: King et al. 2001, Oecologia 128:237-250; Phillips et al. 2002, Oecologia 131(2):236-244

Moderation of CO₂ Responses: Ozone Year 3 Biomass: Aspen FACE

O₃ Effects on Host/Pest Interactions

Clone 259 Low O₃ (Rhinelander, WI) Clone 259 High O₃ (Kenosha, WI)

- Cuticle as first line of defense against pests
- Link of ambient O₃ to P. tremuloides leaf epicuticular wax changes
 - Mankovska, Percy & Karnosky 1998, *Ekológia* 18:200-210

O₃ Effects on Host/Pest Interactions

- Link of elevated O₃ to *Melampsora* leaf rust in *P. tremuloides*
 - Karnosky et al. 2002, Global Change Biol. 8:1-10

O₃ Predisposition of Aspen to Melampsora Rust

Interaction of Aspen/Aphids/O₃

O₃/Pest Interactions

 O₃ can also affect natural enemies of insects as documented by Percy et al. 2002, Nature 420:403-407.

Moderation of CO₂ Responses by O₃: Trophic Interactions

From: Lindroth, unpublished

Impacts of O₃ and/or CO₂ on Gene Expression

- Study of antioxidant gene expression (1997)
- Antioxidant gene isolation and reinsertion (1998)
- Slot Blot (16-20) Sharma (2001)
- Membrane Arrays (1000's of poplar EST's) (2002)
- The near future with genes controlling
 - (a) defense
 - (b) signal transduction
 - (c) growth
 - (d) metabolism
 - (e) structure

Expression of Genes Under Interacting CO₂ and O₃

Preliminary Findings Aspen FACE Project

- Are forests net carbon sources or sinks?
 - Transition from source to sink (3 yrs)
 - O₃ decreases sink strength (with or without elevated CO₂)
- Is carbon sequestered by trees stored for a long time in the soil?
 - Greater amounts of C are forming soil organic matter under elevated CO₂
 - More C may be stored as CO₂ concentration increases
 - More C is also exiting soils (respiration) so may not be net soil gain under elevated CO₂

Preliminary Findings Aspen FACE Project

- Will more or less CO₂ be sequestered by forests as CO₂ levels rise?
 - Physiological/genetic responses cascading through to ecosystem level
 - CO₂ and O₃ have increased C and N flow through the system
 - Yes, more carbon is being stored in young aggrading forest over the short term (5 years) but O₃ offsets gains under CO₂
- Will forests become more or less productive over time under increasing CO₂?
 - Other FACE's (Loblolly pine; Sweetgum) have detected diminishing growth enhancement with time
 - We have not seen it yet

Preliminary Findings Aspen FACE Project

- Will CO₂ "fertilization" be limited by rising O₃ levels, nitrogen limitation or drought?
 - Yes, offset by O₃
 - No indication of N limitation after five years
 - Evidence for water balance changes due to CO₂ and O₃
- How will increasing CO₂ affect insect and disease interactions?
 - Effects of CO₂ cascade through the system
 - Changes mediated by bottom-up (plant) and top-down (natural enemies) factors
 - Potential to alter insect community composition

O₃/CO₂ Interactions: Conclusions

• O₃ moderates the enhancements in growth, physiology, and ecological processes in trembling aspen (*P. tremuloides*), paper birch birch (*Betula papyrifera*), and sugar maple (*Acer saccharum*).

- Karnosky et al. 2003. Low levels of tropospheric O₃ moderate responses of temperate hardwood forests to elevated CO₂: A synthesis of results from the Aspen FACE project. Funct. Ecol. 17:289-304.
- Karnosky et al. 2002. Interacting elevated CO₂ and tropospheric O₃ predisposes aspen (*Populus tremuloides* Michx.) to infection by rust (*Melampsora medus*ae f.sp tremuloidae). Global Change Biol. 8:1-10.
- Chappelka, Karnosky & Percy (Eds.) 2001. Impacts of Air Pollution on Forest Ecosystems, Special Issue *Environ. Pollut.* Vol. 115 (3).
- Percy *et al.* 2002. Altered performance of forest pests under $\rm CO_2$ and $\rm O_3$ -enriched atmospheres. *Nature* 420:403-307.

Getting the word out!

Air Pollution, Global Change and Forests in the New Millennium

(Editors: Karnosky, Percy, Chappelka, Simpson, Pikkarainen)

"In Press"

Research Partners

My email: karnosky@mtu.edu

Web site: http://aspenface.mtu.edu/

Moderation of the Response to Elevated CO₂: Ozone

Short-term Research Needs

- Compare open-top chamber and FACE results.
- Evaluate dose responses of CO₂ and O₃ concurrently for key agricultural and forest species
- Examine mechanisms of CO₂/O₃ interactions.
 - Gas exchange dynamics
 - Role of antioxidant up or down regulation
- Site water balance
 - CO₂ and O₃ suppress stomatal conductance and alter leaf area
 - Stand level water balance for key agricultural crops and forest trees under CO₂+O₃?
- Impacts of CO₂/O₃ on phenology of northern temperate crops and trees.

Moderation of the Response to Elevated CO₂: Ozone

Long-term Research Needs

- Compare CO₂/O₃ impacts on stand level crop and forest situations (WUE, LAI, NPP, Soil C, etc.)
- Examine CO₂/O₃ impacts on ecosystem-level responses (nutrient cycling, water balance, trophic interactions, soil microorganisms, etc.).
- Determine how CO₂/O₃ affect biodiversity of plants, insects, and soil fauna and microbial communities.
- Examine how CO₂/O₃ affect interactions with other environmental stresses (warming, drought, competition, pests, N additions, etc.).

ACKNOWLEDGMENTS

(Our Principle Sponsors)

Office of Science Department of Energy Office of Biological and Environmental Research Serving Science and Society

North Central Research Station

